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Abstract

Background—In recent influenza seasons, the live attenuated influenza vaccine (LAIV) has not 

demonstrated the same level of vaccine effectiveness as that observed among children who 

received the inactivated influenza vaccine (IIV). To better understand this difference, this study 

compared the mRNA sequencing transcription profile (RNA seq) in children who received either 

IIV or LAIV.

Methods—Children 3–17 years of age receiving quadrivalent influenza vaccine were enrolled. 

Blood samples were collected on Day 0 prior to vaccination and again on Day 7 (range 6–10 days) 

following vaccination. Total RNA was isolated from PAXgene tubes and sequenced for a custom 

panel of 89 transcripts using the TruSeq Targeted RNA Expression method. Fold differences in 

normalized RNA seq counts from Day 0 to Day 7 were calculated, log2 transformed and compared 

between the two vaccine groups.

Results—Of 72 children, 46 received IIV and 26 received LAIV. Following IIV vaccination, 7 

genes demonstrated significant differential expression at Day 7 (down-regulated). In contrast, 

following LAIV vaccination, 8 genes demonstrated significant differential expression at Day 7 (5 

up-regulated and 3 down-regulated). Only two genes demonstrated similar patterns of regulation in 

both groups.
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Conclusions—Differential regulation of genes was observed between 2015–16 LAIV and IIV 

recipients. These results help to elucidate the immune response to influenza vaccines and may be 

related to the difference in vaccine effectiveness observed in recent years between LAIV and IIV.
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INTRODUCTION

In recent influenza seasons, the live attenuated influenza vaccine (LAIV) has offered limited 

protection from influenza to children in the United States (U.S.). Specifically, the vaccine 

effectiveness (VE) of LAIV against any influenza in children 2–17 years old was 7% 

(95%CI = −46 to 40%) in 2013–2014 [1] and 26% (95%CI = 3 to 44) in 2014–2015 [2]. 

LAIV’s VE against influenza A/H3N2 was especially low among children 2–17 years in 

2014–2015 (−6% VE; 95%CI = −40% to 20%), while LAIV offered reasonable protection 

(74% VE (95%CI= 25% to 91%)) against the less commonly occurring influenza B [2]. In 

the prior (2013–2014) season, VE of LAIV against (A/H1N1) was poor [1], but influenza A/

H1N1 did not circulate widely in 2014–15, thus VE was not calculated. The reason for the 

reported decline in LAIV VE from previous seasons [3, 4] is unclear. Initially believed to be 

due to heat instability of the A/H1N1 construct in 2014–2015 [5, 6], manufacturer’s 

modifications of the vaccine did not improve VE in 2015–2016 season [7]. In response to 

this low VE, the Advisory Committee on Immunization Practices does not currently support 

the use of LAIV, thereby removing the intranasal delivery mechanism preferred by many 

children. Studies are needed to help to determine what accounts for the differences in VE 

between LAIV and inactivated influenza vaccine (IIV).

In a previous study of children ages 3 to 17 years, post 2014–2015 influenza vaccination 

antibody titers were significantly higher in response to IIV than to LAIV [8]. Moreover, 

microneutralization antibodies measuring cross-reactive protection against influenza were 

significantly higher among recipients of IIV than LAIV. It is likely that other immune 

responses, including cellular or mucosal immune responses, differ between LAIV and IIV 

recipients.

RNA sequencing is a technique that has been used to examine the cellular transcriptome 

such as gene expression, and provides a snapshot at the time of blood collection. Changes in 

the transcriptome before and after vaccination may identify transcription profiles and 

pathways of response that can be used for future vaccine development.

This study was designed to compare the RNA seq responses to the 2015–2016 IIV versus 

LAIV in children during the last year when LAIV use was recommended in the U.S. 

Specifically, selected gene profiles known to be related to viral infection, as well as the 

innate and adaptive immune responses to influenza, were compared.
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METHODS

This study was approved by the University of Pittsburgh Institutional Review Board. Written 

informed consent was obtained from the participants’ parents.

Subjects, Eligibility and Enrollment

This study was conducted before influenza was circulating in the region [9]. From 

September through December 2015, a convenience sample of healthy children aged 3 

through 17 years who planned to receive influenza vaccine were recruited from 3 primary 

care offices in the Pittsburgh area. Exclusion criteria included body weight <17 kilograms, 

having an immunosuppressive disease, taking immunosuppressive medicine or high dose 

oral steroids, pregnancy, and having a severe allergy to the influenza vaccine or its 

components. Parents could choose which form of the quadrivalent vaccine they preferred 

and the children were grouped by the vaccine received. All children received quadrivalent 

vaccines: IIV was either Fluzone (Sanofi Pasteur) or Fluarix (GlaxoSmithKline) as 

determined by their health insurance. Quadrivalent LAIV was FluMist (MedImmune). 

Demographic data were provided by the families and/or extracted from the electronic 

medical record.

Specimen Collection and Processing

On Day 0, participants provided blood samples prior to receiving influenza vaccine as part 

of their clinical care; they returned on Day 7 (range 6–10 days) for an additional blood draw. 

Within 4–6 hours of collection, blood samples collected into PAXgene tubes (Becton 

Dickinson) were centrifuged at 3200 rpm for 10–15 minutes and stored at −70°Celcius until 

further analysis.

RNA sequencing

Total RNA was isolated from PAXgene tubes using the PAXgene Blood RNA Kit following 

the manufacturer’s protocol. The 89 transcripts selected for testing were based on the 

knowledge of the investigators and local experts of genes known to have a role in influenza 

and other viral infections and a review of the medical literature for prior similar studies (See 

Supplemental Tables for a list of all transcripts). Both LAIV and IIV recipients were tested 

for all 89 transcripts. RNA quality and quantity were assessed by Agilent Tapestation 2200 

and Invitrogen Qubit 2.0 fluorometer. Using 50 ng of total RNA, a multiplexed gene 

expression profiling panel of the selected targets was performed using the TruSeq Targeted 

RNA Expression Reference Guide, Rev. C[10]. Single-read 50 base pairs (bp) sequencing 

was performed on an Illumina NextSeq 500 with an average of 2 million reads per sample. 

Sequencing libraries were normalized to 2nM and then pooled.

Alignment

The banded Smith-Waterman algorithm was used to align clusters from each sample against 

the amplicon sequences provided in the kits to determine similar regions between 2 

sequences, comparing segments of all possible lengths. If the start of a read matched a probe 

sequence with no more than 1 mismatch, the full length of the read was aligned against the 
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amplicon target for that sequence. Alignments that included more than 3 indels (insertions or 

deletions) were excluded from alignment results.

Statistical Analyses

Depth of sequencing, variance estimation and calculation of p and q values—
Depth of sequencing was used to compare samples for differences between Day 0 and Day 

7. For each RNA transcript, the raw counts and the geometric mean of aligned read counts 

were calculated for all samples. A scaling factor (median of the ratio of raw counts to the 

geometric mean) was then used to normalize raw counts, dividing raw counts by the scaling 

factor to enable comparison of non-differentially expressed transcripts. The bias inherent in 

estimating variance is correlated with the number of biological replicates; thus, variance was 

calculated using data from all sample IDs rather than calculating for each sample name 

separately. The squared coefficient of variation was calculated by dividing the raw variance 

by the square of the mean.

Fold differences in normalized RNA seq counts from Day 0 to Day 7 were calculated and 

log2 transformed. A negative binomial distribution was used to model the normalized 

transcript abundance to derive a P-value for the differential expression (up- or down-

regulations) of each transcript. Q-values were computed using the Benjamini-Hochberg 

procedure to control the false discovery rate by correcting for multiple hypothesis testing.

Patient characteristics—Demographic characteristics of recipients, including age groups 

(3–8 years vs. 9–17 years), sex, race (Black vs. non-Black), health insurance (public vs. 

private insurance), parent’s educational level (high school or less vs. some college or higher 

degree), and household smoking status, were compared by vaccine type (LAIV vs. IIV) 

using Chi-square or Fisher’s exact tests. Statistical significance was set at P < 0.05.

RESULTS

Seventy-two participants provided adequate Day 0 and Day 7 blood samples for analysis. 

The demographic characteristics of IIV recipients did not differ from LAIV recipients (Table 

1). Differentially expressed genes (DEGs) with a p-value < 0.05 were identified and are 

shown in Table 2. Following IIV vaccination, 7 genes demonstrated significant differential 

expression at Day 7, all down-regulated; whereas, LAIV vaccination resulted in a total of 8 

genes with significant differential expression at Day 7, with 5 up-regulated and 3 down-

regulated. Two genes with significant differential expression at Day 7 were common to both 

vaccine types, both were down-regulated (CCL 7 and CXCR4). Most interesting was the 

striking difference between the two vaccines, where IIV vaccination resulted in down-

regulated 7 genes compared to LAIV vaccination which resulted primarily in up-regulation 

of 5 different genes. Figure 1, a heat map of the gene expression, shows the differences 

between RNA seq responses to the two vaccine types.

Discussion

Systems biology approaches have been used in influenza research since 2011. The present 

study was designed to analyze RNA transcripts following IIV compared to LAIV 
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vaccination during a year when the influenza vaccine was well-matched to the circulating 

strains. Our results demonstrated a remarkable difference between the two vaccines, where 

most of the genes expressed following IIV vaccination were down-regulated, while genes 

expressed after LAIV vaccination were predominantly upregulated. We found differences in 

transcriptional changes when comparing IIV with LAIV for the 2015-16 season; others have 

found differences in a previous season's vaccines [11]. The expression of two genes, CCL7 
and CXCR4, demonstrated similar changes in magnitude and direction in both IIV and 

LAIV recipients.

The genes with significant differential expression in response to IIV included the T cell 

related cytokine interleukin (IL)4, which is a B cell stimulating cytokine produced by 

activated Type 2 T-helper cells (Th2) and IL12B (IL12p40) a cytokine subunit of IL12 and 

IL23, which prime Th1 and Th17 responses, respectively. This finding suggests decreased T 

cell activation 7 days post-vaccination. Interferon alpha 1 (IFN A1), a canonical antiviral 

gene was also downregulated by vaccination. Finally, monocyte and neutrophil chemokines 

and receptors were decreased, including CCL2 (MCP-1), CCL7 (MCP-3), and CXCR4 
(SDF1 receptor), which mediate monocyte chemotaxis, and IL8, a prominent neutrophil 

chemoattractant. These data suggest an anti-inflammatory state 7 days post-vaccination.

Unlike the PBMC response to IIV, we found five upregulated DEGs following LAIV that 

indicates an interferon stimulated gene (ISG) response. This ISG response to LAIV was 

distinct from that observed with IIV. Among these five genes, two are involved in inducing 

or regulating apoptosis of infected or abnormal cells: Interferon alpha Inducible Protein 6 

(IFI6) and Tumor Necrosis Factor Superfamily member 10 (TFNSF10/TRAIL). Another two 

upregulated DEGs, Myxovirus Dynamin Like GTPase 1 (MX1) and Interferon Induced 

Protein with Tetratricopeptide Repeats 3 (IFIT3), are known inhibitors of influenza virus 

replication and promote interferon signaling. Finally, C-X-C Motif Chemokine Ligand 10 

(CXCL10/IP-10) is a type II interferon induced gene that promotes lymphocyte chemotaxis. 

These upregulated DEGs are largely involved in the canonical interferon signaling pathway 

that is invoked in response to live virus infection. Why LAIV induces interferon signaling, 

while IIV did not at this time point, is unknown, but intriguing. The association of LAIV 

vaccination with upregulation of genes involved in apoptosis may be indications of alternate 

mechanisms of action [12], and warrant further evaluation of immune responses associated 

with LAIV vaccination.

The dramatic difference between transcriptomic responses to the two vaccines and previous 

findings that children who received LAIV generated a less robust IgG antibody response 

than those who received IIV [8] provide new insights to help explain the lower vaccine 

effectiveness of LAIV observed during the 2015–16 influenza season [7]. Cao et al., found 

differential expression in the IIV group of plasma cell-mediated and inflammation genes, but 

in the LAIV group found IFN and cell-cycle-related transcripts [11]. IIV has been found to 

induce expression of IFN genes at day 1 post vaccination, while LAIV was not found to be 

associated with these changes until day 7 [10]. It is possible that IIV induced gene 

expression occurs earlier than LAIV and this temporal difference in transcriptional 

regulation may affect protective immunity. The pattern of overexpression of IFN genes has 

been suggested as a biomarker of vaccination response [13]. Certain IFN-related DEGs were 
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also correlated with antibody response. We add to this important work of Cao et al., by 

including a larger sample size of children using data from the last season that LAIV was 

widely used and a season when LAIV did not perform well, as reported by the US Flu VE 

Network [7].

Identification of predictive signatures of serologic response to vaccination is an emerging 

field of systems biology. Bucasas et al. were among the first to demonstrate a positive 

correlation between HA titers and upregulation of interferon-responsive genes early after IIV 

vaccination [14]. Elevated antibody titers to IIV are correlated with upregulation of B-cell 

specific transcripts, upregulation of immunoglobulin genes, and proliferation-associated 

genes. These responses may be predictors of vaccine-specific antibody and plasmablast 

responses at seven days post vaccination [15], as Kim et al. have shown a similar 

relationship between antibody titers and circulating plasmablasts following IIV vaccination 

[16]. More recently, a methodology has been described for isolating and characterizing RNA 

transcripts in peripheral blood cell subsets compared to whole blood following influenza 

vaccination [17].

This approach, combining systems biology and predictive modeling to vaccinology, provides 

a powerful tool for unraveling the molecular mechanisms of vaccine-induced immunity [18, 

19]. Systems vaccinology has recently been used to successfully study the immune 

responses to influenza vaccination in adults [14, 17, 19–23]. The current study adds to the 

body of systems vaccinology literature for understanding immune response to influenza 

vaccine among children and highlights the many differences between responses to LAIV and 

IIV. It is important to note that these differences may not reflect potential differences in 

response to infection with wild type influenza compared with LAIV [13, 24].

Strengths and Limitations

The primary strength of this study is that it uses one of few data sets available on the 

transcriptional response to the 2015–2016 influenza vaccine when LAIV had limited 

effectiveness but was still widely being used. Further, many of the children sampled had 

been enrolled in the study for two or more years, providing a unique opportunity to evaluate 

and compare immunity elicited by LAIV to that of IIV and the impact of prior vaccination. 

Investigators at Stanford confirmed limitations of using current serum antibody assays to 

monitor vaccine effectiveness, demonstrating that prior vaccination priming was critical for 

the effective immune response to the current vaccine year as measured by plasmablast and 

other more in-depth immune responses [25]. Of note, a larger proportion of children 

received IIV compared to LAIV, as this was a convenience sample of children for whom 

sufficient specimen volume for both Day 0 and Day 7 were available. A limited set of pre-

selected genes was used for testing; however, this selection was based on the knowledge of 

local experts and review of the medical literature of prior similar studies. It is possible that a 

larger sample size or examination of other genes would generate additional results and that 

another mechanism explains the differences in response. Given the limitations in sample 

size, we report both P and Q values in Table 2, thereby allowing readers to determine which 

they prefer. Furthermore, these findings should be evaluated in the context of a broad 

spectrum of humoral antibody responses (IgG and IgA), protein expression and cell 
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mediated responses in the same population. It has recently been suggested that obesity and 

exposure to cigarette smoke may each be associated with immune dysfunction and may 

affect response to vaccines [26, 27]. However, Smit et al. did not demonstrate a difference in 

rates of PCR confirmed influenza in vaccinated obese children compared with vaccinated 

non-obese children [28]. The current study was not large enough to examine these variables 

and future studies should further evaluate these relationships. Additional factors that may 

affect VE, which we could not evaluate in our study, include vaccine match and mutations 

due to passage of the vaccine virus in eggs during manufacturing [29].

Conclusion

Differential gene expressions were observed between children who received the 2015–16 

IIV and those who received the LAIV. These transcriptional profiles help to elucidate the 

differences in the immune response to influenza vaccines and may help to explain why 

LAIV has not been as effective as IIV in recent years.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key points – Vaccine RNA seq paper

Selected RNA sequencing was studied before and after LAIV and IIV 

administration in children.

After IIV vaccination, 7 genes demonstrated significant differential expression at 

Day 7 (down-regulated).

In contrast, following LAIV vaccination, 8 genes demonstrated significant 

differential expression at Day 7 (5 up-regulated and 3 down-regulated).

Only two genes demonstrated similar patterns of regulation in both groups (down-

regulated).
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Figure 1. Heat maps of RNA-seq responses to IIV and LAIV
Heat maps representing differential expression of genes between Day 0 (pre) and Day 7 

(post) vaccination based on P<0.05. IIV = inactivated influenza vaccine; LAIV = live 

attenuated influenza vaccine
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Table 1

Demographic Characteristics of Participants Overall and by 2015–2016 Influenza Vaccine Type

Variable
Total
N=72
n (%)

LAIV*
N=26
n (%)

IIV**
N=46
n (%)

P-value†

Age 9–17 years, ref. = 3–8 years 58 (80.6) 20 (76.9) 38 (82.6) 0.558

Male, ref. = female 31 (43.1) 9 (34.6) 22 (47.8) 0.277

Black race, ref. = white and others 62 (86.1) 22 (84.6) 40 (87.0) 0.783

Parent’s education ≥ some college, ref. = high school or less 40 (55.6) 16 (61.5) 24 (52.2) 0.442

Public health insurance, ref. = private insurance 64 (88.9) 24 (92.3) 40 (87.0) 0.488

Smoker in household 31 (43.1) 8 (30.8) 23 (50.0) 0.113

*
Live attenuated influenza vaccine

**
Inactivated influenza vaccine

†
By Chi-square test
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